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Abstract. The existing stability theory for finite difference models of hyper-
bolic initial boundary value problems, due to Gustafsson, Kreiss, and Sundstr6m,
is difficult to understand in its original algebraic formulation. Here we show

that the GKS stability criterion has a physical interpretation 'in terms of group
velocity: if the finite difference model together with its boundary conditions can

support a set of waves at the boundary with group velocities pointing into the

field, then it is unstable. A simple argument explains why such a set of waves is

unstable, and yields a new theorem on what kind of unstable growth to expect.

We give examples in one and two space dimensions.
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0. INTRODUCTION

When time-dependent partial differential equations are solved numerically by
finite difference methods, more boundary conditions are usually required than the

-*physics of the problem provides. This necessitates a selection of additional numeri-
cal boundary conditions, and in this choice an overriding consideeation is numerical

stability. For the case or hyperbolic equations, the stability question is solved in prin-

ciple by the theory of Gustafsson, Kreiss, and Sundstr6m [9]-henceforth "GKS".
However, application or this theory has been hindered by its complexity and abstract-
ness. The purpose of this paper is to point out that the main result of the GKS theory
has a simple physical interpretation in terms of group velocity. This interpretation
does not provide an alternative to the algebraic stability test of the GKS theory, which

may in practice be difficult to carry out, but it makes the meaning of the algebra clear.
It also leads to a proof that except for certain borderline cases, GKS-unstable models

are unstable not only in the complicated norm of [91, but in the t2 norm also.
Group velocity is a concept associated with energy propagation under dispersive

equations, not hyperbolic ones. Its significance to numerical stability results from

the fact that finite difference models, even of nondispersive equations, are necessarily
dispe. ive. A general discussion of group velocity effects in finite difference models
may be found in [13]. For this one should also see the work of R. Vichnevetsky,
including [15] and the papers referenced there. The particular topic of the present
paper is treated in much greater detail in the author's PhD dissertation, [14].

In the first section here, we look at a simple example to illustrate the group
velocity idea. Section 2 extends this to the general setting of GKS. Section 3 applies
these results to define certain general classes of unstable difference models, in several
space dimensions as well as one, which generalize examples that have appeared in the

literature.

1. AN EXAMPLE

Consider the model problem

a., ~Ut =U 5  11

for z E (-cc, 00), t E [0, cc), with initial conditions

u(z, O) = (X). (1.2)

Such an initial-value problem on a domain without boundary is called a Cauchy
problem. The exact solution is u(z, t) = f(z + t), a leftward translation at speed 1.
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In a Fourier or normal mode analysis of (I.I), one looks for wave solutions

u(X, t) - e,(w,€), (1.3)

where w is the (temporal) frequency and C is the wave number. Eq. (1.1) implies that
w and t are related by

o --- , (1.4)

which is called the dispersion relation of (1.1).
Let us set up a uniform grid with space step h and time step k, and approximate

u(z, t) by a grid Function vn:

q ;:;u(jh, nk), (-oo < j < oo, n>__0).

One of the simplest difference models for (1.1) is the leap frog (LF) Formula

= v-' + (v7+ 1- (1.5)

where ) is the meah ratio or Courant number k/h. For X < 1 this scheme is stable; we
say that LF is Cauchy stable. By plugging (1.3) into (1.5), one obtains the dispersion

relation for LF,

e,-k = e-ik + X[e-ith _ eit' ,

that is,

sin wk= -Xsin Ch. (1.)

This relation approximates (1.4) only for small wk and Ch-that is, only for waves
that are well resolved on the grid.

Since w is no longer a linear function oF c, the LF model is said to be dispersive.
According to a theory going back to Lord Rayleigh [3,4,11,161, energy associated with
wave number C will propagate at a group velocity* given by

C dwo C = '- "(1.7)

For LF one obtains, by differentiating (1.6) implicitly,

C cos h (1.8)• , G " cos wok" l

It is apparent that energy associated with different wave numbers or frequencies will
travel at different group velocities, so that an initial signal that is not monochromatic

will change form as it propagates. For a well resolved wave one has Ch = 0 and

*The group velocity is not the same as the phase velocity, C = WIC. Readers unfamiliar with this
distinction are encouraged to read the discussions in 141, [111, or [161.
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wk ; 0, hence wk -XCh by (1.6), and (1.8) becomes

C = -1 + (h + O((Ch)4). (1.9)

Thus typical signals travel leftward at a speed less than the ideal speed 1, with

higher wave numbers lagging more than lower ones. This dispersion of wave numbers

gives rise to the spurious oscillations near discontinuities that are familiar in finite

difference computations. Alternately, if one sets up a wave packet consisting of energy

at essentially constant w and C, the packet will be seen to move leftward without

changing at the velocity (1.8)-(1.9). For illustrations see [13,151.

The key to our analysis is that (1.8) is valid not only for well resolved waves, but

for all waves supportable on the grid, which means a range of (-7r, 7r] in both Ch and

wk. In fact for many waves, C has the wrong sign, so that energy travels in the wrong

direction. In particuar, (1.8) gives the following group velocities for four extreme

situations--the constant function and three parasitic waves that are sawtoothed in z
and/or t:

(Ch, wk) C

(a) (0,0) - 1
(b) (r,0) 1

W (0, 7r) 1
(d) (-7r, 7r) -1

Line (b) implies, for example, that if initial data are supplied to LF of the form

, {(ol),• (1.10)

J J 0 (jh >' )

for some ( > h > 0, then the result as t increases will be a steady rightward motion

of the wave front from x = c at speed 1. See Fig. 6 of (13].
Now let us turn to an initial boundary value problem. Let (1.1) and (1.2) be

given on the quarter-plane x, t > 0; no boundary data at z = 0 are needed to make

this problem well posed. To obtain an approximate solution on the g:id j,n > 0,
winitial values vQ and vi for j > 0, and apply LF for n > 2 at points, we can speciy inta vaue v0 an

j > 1. An additional boundary formula is then needed for u", n > 2.

Suppose we (foolishly) pick the boundary formula

= 1(f0 + 2) (n>1) (1.11)

and proceed to step forward in time. Now imagine that at some time step a pertur-

bation (e.g. rounding error) happens to be introduced that has the form (1.10). It is

easy to see that such a wave satisfies (I.11), and therefore this mode will behave just

as if the domain were still (-oooo): the wave front will begin to propagate rightwards

3
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FIG 1. Appearance of an unstable rightgoing parasitic wave

in the Leap Frog model (1.5), (1.11) with initial conditions (1.12).

into z > 0 at speed 1. The initial perturbation, with sum-or-squares energy on the

crder of e, will give rise to a growing solution with energy on the order of f + t.

Since c might be arbitrarily small, this amounts to an amplification of the initial

perturbation by an unbounded factor. The difference scheme is unstable, because

tiere exists a rightgoing wave that satisifies both the interior formula (1.5) and the

boundary candiiion (1.11).
One can verify experimentally that the scheme (1.5), (1.11) is susceptible to an

unstable rightgoing mode of type (b). Fig. 1 shows a computation on a grid with

h = 1/40, X = 1/2. For initial data we took v =0 for all j except for the
"random" nonzero initial values

.0* 1 ( 1)

Figs. la-c show the resulting solution at steps n = 1,4,40, i.e. t - .0125,.05,.5.
Obviously the expected mode has been excited, and apparently no others. In a realistic

computation, rounding errors would cause a similar radiation of energy in this mode

from the boundary. From (1.8) one can see that there are many other rightgoing

modes for LF--in fact, any wave with Ch < 7r/2 and wk > 7/2 or Eh > 7r/2 and

wk < 7r/2. Mode (c) is the simplest example. None of these lead to instabilities,

however, because none of them satisfy (1.11).

The main GKS theorem asserts, roughly, that -kn initial boundary value problem

model is stable if and only if

(i) the interior difference formula is Cauchy stable;

(ii) the model (including boundary conditions) admits no eigensolutions that grow

4



i 
- ~~ ~~ . . ._ _ .-- -.. .. . . ...- .. - '

'

from each time step to the next by a constant factor z with Izi > 1;

(iii) the model (including boundary conditions) admits no wavelike solutions with
group velocity C > 0.

In practice, (i) is easy to verify, and there are rarely any growing modes of type (ii).

The critical condition is therefore (iii). We will state the GKS theory more precisely
in the next section.

To obtain stability in the present example, we might replace (1.11) by the con-

dition
V - j(vo + v"). (1.13)

Then it is not hard to verify that (ii) is satisfied, and the only wavelike mode admitted

by the difference model is (h, wk) - (0,0), which has C = -1 < 0, hence cannot

cause radiation from the boundiry. Thus (iii) is satisfied and the model is stable.

It may seem that the kind of energy growth in Fig. 1 is too weak to be dangerous,

and should not be considered unstable. Though this may be true for the present model

problem, it is usually not true in realistic computations, for various reasons. One is
that when a rightgoing signal of constant amplitude can occur, then sometimes similar

signals with amplitudes growing linearly with n or faster are also possible. Such noise

might soon become significant even though it began at the level of rounding error.

Second, if the semiinfinite region z > 0 is replaced by a bounded strip such as (0, 11,
then a wavelike instability of type (iii) may be converted by repeated reflections back

and forth to an exponential growth of type (ii), which is unambiguously unstable.

Third, the rate of growth may also be increased if variable coefficients or lower order
(undifferentiated) terms are present. The GKS theory shows that by ruling out the

relatively weak instability of Fig. 1, one can be certain that these more serious effects

are also excluded.
In summary, GKS instability amounts to the spontaneous radiation of energy

from the boundary into the interior. In a realistic physical application, this is likely

to cause trouble.

5
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2. GENERAL STATEMENT OFTIE GKS THEORY

Consider now a first-order hyperbolic system

oju(x, t) A -. U(z't), (2.1)

where u is an N-vector and A is a constant nonsingular Hermitian matrix of dimension
N X N. (All of what follows extends to equations that include a zeroth-order term

Bu(x,t) and a forcing function F(x,t).) Let (2.1) be modeled in x > 0 by a fixed
8 +2-level Cauchy stable difference formula, explicit or implicit, whose stencil extends
t points to the left and r points to the right of center. For example, LF has a - 1

and t = r = 1. We can write the difference model formally as

- 0 Q (2.2)

where v! =e, u(jh, nk) is an N-vector for each j and n, and each Q, is a difference
operator with matrix coefficients of size N X N. For simplicity we will assume that
each Q, is constant, independent of h. If (2.2) is applied for j t I, then boundary
formulas are required to determine values v! for j = 0,..., - 1:

Il" = Si({tV}O<i<q, .. {v }0<i:q, {v'+ 1}t<i<q) 0 _ . < 1-1. (2.3)

These formulas comprise both physical boundary conditions, such as couplings be-
tween outflowing and inflowing components of v, and additional purely numerical

i t boundary conditions. Unfortunately, it would take many pages to state precisely the

form of the difference model and the assumptions it must satisfy, so for details the
reader is referred to §1 and §5 of [91 and to §4 of [61, where the presentation is clearer.

The GKS idea is to perform a normal mode analysis of what solutions the model
(2.2), (2.3) can support. To find the normal modes, let us begin by ignoring the
boundary conditions (2.3). In the last section, we looked for wavelike solutions (1.3)
with frequency w and wave number . Let us now write

z e' , -X= eh. (2.4)

The vector analog or (1.3) then takes the form

-! =Z n r., (2.5)

where V, is a constant nonzero N-vector. Now suppose that instead of taking Izi = 1,
we let z be any complex number with Izi > 1. Then there are still modes of the form

(2.5), but now x will become complex also, with licl y 1. (The circumstance IzI > 1,

I --c = 1 would violate the von Neumann condition, and we have assumed that (2.2)

6 I.
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(a) (b)

n i nFIG 2. Sketch of signals v. K z with zf >1.

(a) Rightgoing, 1K, < 1 • (b) Leftgoing, 1K( > 1.

is Cauchy stable.) Figure 2 suggests the two possibilities lJic < I and HI > 1. From

one time step to the next, each mode in Figure 2 increases in amplitude by a ratio

jzf. It is obvious, however, that we may view this equivalently as a lateral motion,
rightward in case (a) and leftward in case (b), combined with a change of phase. We

will call these rightgoing and leftgoing modes, respectively.

Modes of the form (2.5) do not always span the set of solutions with time

dependence z". If p > I oc's coalesce for some z, then a defective situation results in
which a p-parameter collection of modes are possible,

V" = zcjijiP (0 < d < p- 1). (2.6)

(The defective situation p > 1 rarely occurs in practice.) A fundamental lemma of

[91 now states

Proposition (19], Lemma 5.2). For any z with IzI > 1, (2.2) admits a total of

exactly N1 linearly independent solutions of type (2.6) with jrc1 < 1, and exactly Nr

such solutions with jxt > 1. |

This result is proved by reducing the difference model to a recurrence rclation in j.

From it we get the general solution to (2.2) that varies with z":

Proposition. For any z with Iz > 1, the general solution to (2.2) of the form

v i = = z"Oj may be written

P-I p-I

= ) a.'dcj + E iFOxd jj (2.7)
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for arbitrary constants a, ,d. I

We may think of (2.7) as describing a linear combination of NI rightgoing and Nr

leftgoing modes.

Now ht us reintroduce the boundary conditions. The full model can support

only any solutions (2.7) that satisfy (2.3) as well as (2.2). There are N1 boundary

formulas, and (2.7) depends on N(t + r) free parameters, so one may expect that

there will normally be an Nr-dimensional space of solutions that the model supports.

In such a solution, a combination of leftgoing waves hits the boundary and reflects

as a combination of rightgoing waves. This kind of configuration is in general not

unstable, even though the reflected energy may be larger than the incident energy.

But occasionally it may happen that some collection of rightgoing signals satisfies

(2.2) and (2.3) by itself, i.e. without any stimulation by leftgoing signals. In this

case the left/right reflection coAicient has become infinite. Then the model has an

instability of the Godunov-Ryabenkii (G-R) type [121:

Godunov-Ryabenkii theorem. Suppose that for some z with IzI > 1, the

model (2.2), (2.3) admits a solution of the form

p--I

Z"O, = Z" a.Z d' (2.8)
(oi <1 d=O

Then it is unstable.
Proof. If v' = z'Oj is taken as initial data for 0 < a < s, the solution as n

increases will be v7 = z"Oj for all n. Since t = nk, this means that v will grow like

Izit/k. With Izi > I this growth is unbounded for any t as k --+ .

A similar solution made up of leftgoing waves would of course also grow unboundedly

in amplitude, but this would amount to propagation of energy leftward from infinity

rather than generation of energy at the boundary. The initial wave would not have

finite size in t2 or any other reasonable norm, and could not be excited by rounding

errors or other perturbations. The wave 0 in (2.8), on the other hand, does belong to

12, and is called an eigensolution of the difference model.

The set of potential eigensolutions 0, since they are made up of rightgoing

signals only, is spanned by NI free parameters, which exactly matches the number of

boundary conditions (2.3). Therefore the G-R condition has this algebraic form: does

there exist, for any Izj > 1, a nontrivial solution of a system or NI linear homogeneous

equations in NI unknowns that depends on z? Hence the problem can be cast as a

determinant condition involving an N1 X Nt matrix M(z). (For examples see [5,6,9].)

Godunov-Ryabenkii theorem (determinant condition). A necessary con-

dition for stability of the model (2.2), (2.3) is

det M(z) 3 0 (2.9)

8



for all z with Izi > 1. 1

A virtue of normal mode analysis is that in principle, the determinant condition can be
verified mechanically, although in practice this may be very difficult [6]. In contrast,

stability proofs by the energy method [10,12] require a measure of intuition and luck.

The limitation of the G-R condition is that it is a necessary condition for stability,

but far from sufficient. To obtain a condition that is sufficient or nearly so, one

must investigate the borderline case lzl = 1. This is the main achievement of the

GKS theory. From the OKS point of view, this investigation is a matter of showing

algebraically that certain resolvent estimates obtained for Izi > 1 extend continuously

to Izi = 1. From our point of view, it is a matter of observing that the ideas of

"leftgoing" and "rightgoing" still make sense as Izj - 1, because in the limit Izi = 1

the lateral motion in Figure 2 becomes a group velocity.

First, the GKS approach. For Izi = 1, what unstable solutions along the lines

of (2.7), but also including components with li.1 = 1, can (2.2), (2.3) support? The

GKS theory gives the following answer based on a perturbation test. First, one can

rule out components with lid > 1, as before. One then investigates: are there any

solutions to (2.2) and (2.3) of the form (cf. (2.8))

P--I
n= Zn j a dij?,J (2.10)

EI_ ax~
IMI !1 d=O

for some z with Izi > I? If not, the model is stable. If so, a further test is required.

Given a solution (2.10), let z be perturbed slightly to a new value i with jil > 1.
Each x with lid = 1 will then move to a nearby value k with JR1 = 1. If every Pc

for which a,,d 3 0 in (2.10) moves to ]7] < 1, then (2.10) is an unstable mode and

the model is unstable. A solution o, of this sort with Izi = 1 and Itcl = 1 for at least

one Pc is called a generalized eigensolution of the difference model. The qualification

"generalized" has been introduced because such a solution no longer belongs to 12.

The GKS stability theorem can now be stated:

GKS stability theorem. The model (2.2), (2.3) is stable if and only if (2.2)

and (2.3) admit no eigensolutions or generalized eigensolutions with Izi 1. *
A simpler but less constructive way to express the same theorem is by means of the

determinant condition. The NI X Nt matrix M(z), which for IzI > 1 embodies the

condition that there be an eigensolution of G-R type, has a continuous extension to

Izi = 1. Let M(z) for Izi > 1 denote this extension. Then one has:

GKS stability theorem (determinant condition.) A necessary and sufficient

condition for stability of the model (2.2), (2.3) is

dot M(z) # 0

for all z with Izi > 1.

9



Proof. This result is stated as Lemma 10.3 and the sentence following in [9]. 1

Now for the group velocity interpretation. Assume, as is usually the case, that R

depends analytically on i in a neighborhood of a point z where jx(z)I = IzI = 1. By

(2.4), we have then
d = ikz dw, dR =-ihic d

and therefore
dw d /ikz I di/z

C =;--- 1(.)

If C > 0, (2.11) implies that d /z and dk/ic will have equal and opposite signs. In

other words, r, moves inside the unit circle when z moves outside. Conversely, if

C < 0, Kc moves outside the circle when z does, and the solution (2.10) does not

represent a generalized eigensolution. Thus the GKS perturbation test for generalized
eigensolutions corresponds to a test for positive group velocities.

The argument of the example in Section 1 explains why a solution made of waves

with positive group velocities should be unstable. The same idea leads naturally to

the following necessary condition for stability in the general case:

Theorem 1. Suppose that the model (2.2), (2.3) admits a solution of the form

(2.10) with IzI = 1, where for each r. with Ie1 = 1, the group speed defined by (2.11)

exists and satisfies C, > 0. Suppose that for at least one such ,c, say Kco, Co,. > 0.

Then the model is unstable. 1

In fact, we can be more precise:

Theorem 2. Suppose that the model (2.2), (2.3) admits an unstable generalized

eigensolution as described in Thin. 1. Then there exists a constant p > 0 such that

if E > 0 and t > 0 are arbitrary, then for all sufficiently small h, k, there exists a set

of intitial data {v"}, 0 < o < s, such that

II1 I1I forj 0, 0< a<,

v = 0 for jh > c, 0 <a< s,

and

where I ll 2 - t (2.12)

1where II 12 denotes the norm defined by

0

j=0

Proof. Assume d = 0 for all waves in (2.10). Let initial data be chosen equal

to 1/amax times (2.10) near x = 0, but cutting off smoothly to 0 for jh > C. As

time elapses, each smooth wave front will propagate rightwards at its group speed

10



C,,. This will cause growth at least as fast as (2.12) if p is taken as C IoaI.,g0 /Ima.
For a more rigorous proof, including the case d > 0, see [14]. 1

Theorems 1 and 2 are not quite the same as the GKS stability theorem. The
latter asserts that even if every wave in (2.10) has C = 0, the model is still unstable.
From the group velocity point of view, it is not clear why this should be so, for if a cut

off wave is set up as in the proof of Thin. 2, but with C = 0 for each component, then
as t increases the wave front will approximately remain stationary. The explanation
is that the GKS theorem does not define stability in terms of a simple 12 norm, but
in a more complicated fashion under which a wave that remains stationary at the
boundary turns out to be unstable (Defn. 3.3 of [9]). The GKS definition has other
peculiarities too, the most troublesome of which is that it defines stability not in
terms of a norm at a fixed time t, but in terms of an integral of the solution over all
t > 0. We will not go into the details.

The situation here is something like that discussed at the end of Section 1: by
choosing a conservative definition of stability, one can obtain a theory that is robust
with respect to variable coefficients, undifferentiated terms, and so on. In fact, the
striking difference between the GKS theorem and our Thin. 1 (coupled with the G-R
condition) is that the former gives a necessary and sufficient condition for stability,
made possible by the use of the complicated norm. The difference between this
situation and that of Section 1 is that in this case it is not as clear that in realistic
computations, the conservative choice is generally necessary. We are now dealing with
a borderline subcase (C = 0) of a borderline case (wavelike eigensolutions). There do
not appear to be any published examples of instabilities of the C = 0 type in which
numerical trouble actually becomes evident.

In practice, stability for a particular problem will be determined by a host of in-
teracting phenomena that depend on whether and how smoothly the coefficients vary,

whether an undifferentiated term is present, whether homogeneous or inhomogeneous
- !boundary data are supplied, whether there is more than one boundary, and whether

the boundaries are characteristic. Probably no simple theory can encompass all per-

mutations of such effects without some artificiality. For a further discussion of these
matters, see [14].

11
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3. APPLICATIONS

We will now give five examples of unstable boundary conditions, or their equiv-

alents. In each case the unstable mode consists of nothing more than a combination

of constant and sawtoothed signals, and this is typical for instabilities encountered in

practice. In the course of the examples we will extend the theory to problems with

interfaces and to multidimensional problems, where a vector group velocity becomes

needed.

Because of the repeated occurence of sawtoothed waves, it is convenient to devise

a name for schemes under which they propagate in the wrong direction:

Defn. Let Q be a scalar difference formula. Suppose that whenever Q admits

a solution v! = z" with Izi = 1 and group speed C E R, then it also admits the

solution v! = (-)jz", and this wave has group speed C' E I? satisfying CC' < 0.

Then Q is i-reversing. Likewise if the existence of a solution v? = ,c with 11cI11

and group speed C implies the existence of a solution v= - (-1)"xi with CC' < 0,

then Q is t-reversing.

Any scheme based on the standard second-order centered difference in x or t is

reversing for that variable, with CC' = -1. Thus LF, CN (Crank-Nicolson), and

BE (Backwards Euler) are x-reversing, and LF and LF4 (fourth-order leap frog)

are t-reversing, as is any modification of LF with (spatial) dissipation added. More

generally, the general (21+ 1)-point difference approximation to a/az or /O/t of order

21 is also reversing 1141, with CC' < -1 for t > 2. A dissipative scheme cannot be

x-reversing, and a scheme that dissipates oscillations in t (for which there is no name)

cannot be t-reversing 114].

Application 1: space extrapolation with t-reversing formulas

Let (1.1) be modeled by a difference formula Q for j I I coupled with qjth-order

space extrapolation boundary conditions

S : [(E -- I)q, V + I]j• = 0 (0 _< t-- 1)

for the boundary points, where E is the shift operator defined by [Evi, = vj+l and

qj I for each j. The result appears in [91, and in various other papers, that S is

unstable if t = I and the interior scheme is LIF. Ilere is a generalization:

Theorem 3. Any consistent t-reversing difference formula Q for (1.1), such as

LF or LF4 with or without dissipation, is unstable in combination with the boundary

condition S.

Proof. The sawtoothed wave v= = (-1)n satisfies S for any set {q2 }, and if Q
is t-reversing, it also satisfies Q and has C > 0, since by consistency v -- I must
satisfy Q with C = -1 < 0. By Thin. 1, the model is therefore unstable.

12
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The instability with S of an LF scheme with spatial dissipation added is pointed out

by Goldberg and Tadmor in [8].

Application 2: "one-sided leap frog" with t-reversing formulas

Similarly, it has been noted in various papers that if (1.1) is modeled by LF for

j > 1 with the boundary condition

+ = = - l + 2X(v" -

then the result is GKS-unstable. As a generalization, consider any set of boundary

conditions

v + =v!-' + 2kDv7 0 < j <t-1 (3.1)

where each Dj is a one-sided spatial difference operator involving at most j points to

the left of center, consistent with a/az. We obtain just as above

Theorem 4. Any consistent t-reversing difference formula Q for (1.1) is unstable

in combination with the boundary condition (3.1). 1

Application 3: sign-changing coefficients; nonlinear instability

Consider the problem

.1ut --- (x3.20a+u (z > 0), (3.2)

where a- and a+ are constants. To model this by finite differences, we might set

up a grid ((j + ')h, nk) for -oo < j < o0, n > 0. Suppose we apply consistent

difference formulas Q_ and Q+ for x < -h/2 and z > h/2, respectively, taking

no special measures to improve accuracy at the interface. The stability question for

such an interface is essentially the same as for an initial boundary value problem,
and the GKS theory has been applied to such problems by Kreiss, Ciment, Oliger,

and others [51. Formally, a scalar model including an interface can be "folded" into

an initial boundary-value problem for a system of two variables, and then the GKS
theory is directly applicable. What is really going on in such a process is a search for

eigensolutions or generalized eigensolutions consisting of waves that are outgoing from

the point of view of the interface. That is, a difference model involving a scheme-

or mesh-change interface is GKS-stable if and only if there is no eigensolution of the
kind suggested in Fig. 8:

13



FIG 3. In a problem containing an

interface, a solution consisting of

a set of outgoing waves on each side

will be unstable.

If sgna_ = sgn a+, then most models for (3.2) are stable, but stability vanishes

if sgna- 3 sgna + :

Theorem 5. Let (3.2) be modeled by consistent formulas Q_ and Q+ as indi-

cated above. If a- > 0 > a+, the model is unstable.. If a- < 0 < a+ and Q_ and

Q+ are both z-reversing or both t-reversing, the model is also unstable.

Proof. In the first case, the constant function v. = 1 is an outgoing wave that

satisfies all the difference formulas, so the model is unstable by Thin. 1. In the second

case, the same goes for a space or time sawtooth (-1)3 or (-1) n . I

This elementary example is related to certain known examples of nonlinear

instability. If the Burgers equation

Ut = UUX

is modeled by the LF scheme

v9+1 -1v- 1 = Xv7 (v7"+, - v.,),

then exponentially growing instabilities arise that are characterized by oscillations of

the form [7,10]
V, O, 

n 
I < 0, Vn+ 2 > 0 , Vj+--O.

Though it is easy to enough to examine this problem directly, it also has a rough

interpretation along GKS lines. LF is an z-reversing formula, and the instability

observed looks approximately like the outgoing sawtooth of Thin. 5 from the point of

view of the sign-change interface at Zj+3 1. The linear growth of this outgoing wave

would be converted into exponential by reflection at points z, and zj+3 even if the

coefficients v3 did not change from one time step to the next; the fact that they do

makes the growth even more rapid.

14
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Application 4: mesh refinement

In problems where the solution is smoother in some regions than in others, it

may be useful to combine grids of various sizes 15]. Where two such grids meet, some
kind of interface condition will be required. Hlere is a mesh refinement scheme for

which the stability result takes a particularly interesting form (Joseph Oliger, private

communication). Suppose that for z > 0, the grid z, = hj (j _ 0) is set up, while for

z < 0, this is coarsened by an integral factor of m > 2, so that the grid is zi = mhj
for j <_ 0. If (1.1) is modeled by LF for j : -1 and j 2! 1, a formula is still needed

to determine vn. The obvious choice is to apply the coarse grid LF formula at j = 0,

which is possible because the value required at z = mh is available from the fine grid:

+1 = v"-' + eX(v" - V'). (3.3)

Now suppose a wave is considered of the form

V; = ) (j 0) (3-4)

On z < 0, this wave is constant and has C = -1. On z > 0, it is sawtoothed and has

C > 0 since LF is z-reversing. Thus (3.4) is outgoing on both sides of the interface.

Moreover if m is even, it obviously satisfies (3.3), so we have instability.

This conclusion can be generalized as follows:

Theorem 6. Let (1.1) be modeled by a consistent x-reversing 3-point formula

on xj = jh for j _ 1 coupled with any consistent formula on xj = jmh for j <0 0,
C, with right-hand values for the latter near the interface taken where needed from points

imh with i > 1. Then if m is even, the model is unstable. I

For LF or CN the sawtooth (3.4) turns out to be the only instability that arises, so
this kind of mesh refinement is stable if m is odd.

Application 5: two-dimensional problems

Abarbanel and Gottlieb [1] and Abarbanel and Murman [21 have studied the
stability of various difference schemes for the following problem in two space dimen-

sions:

ut = U2 + t& z,t >_ 0, v E (-oo, oo). (3.5)

The solutions to this equation consist of functions

,(X , ,t) = u(x + ty + t,0).

That is, information propagates with a vector velocity (-1, -1). Since the flow is

outward across the boundary z = 0, no boundary conditions should be given there.

15



For a multidimensional problem like this, t becomes a wave number vector e,
and the group speed 0..7) generalizes to a vector group velocity given by

C = Vew, (3.6)

where VC denotes the gradient with respect to J. As in the one-dimensional case,
difference schemes not only lead to incorrect group speeds, but may cause propagation
in the wrong direction-which means at any angle in the (x, y) plane whatsoever.

See (131 for a discussion with examples. In two dimensions, Thin. I becomes: if a

difference model of (3.5) admits a solution consisting of waves with group velocity C
pointing into x > 0 (i.e. with C. > 0), it i unstable. If one such wave has C. > 0,
then unbounded growth in 12 will take place, as in Thin. 2.

For example, suppose (3.5) is modeled by the leap frog formula

, ' - ,,' = X(,' ,. - + X(v,,. - v,._ 1 ). (3.7)

The dispersion relation for this scheme is

sin wk = -X sin h - X sin q/h,

where 7 (, ,), and from (3.6) there follow the group velocity components

Cz cos Ch h v cos gh
Cos Wk 'Cos Wk"

As usual, these reduce to the ideal value C = (-1,-1) for Ch, wk -0 . If we look
at parasites, on the other hand, we see that a sawtooth form in x or y negates C. or

C., respectively, and a sawtooth in t negates both. One has

Ch-, ih, wk C
S(a) (0,0,o0), ir , ir) - I-)

(b) (x,0,0), (0, W, IF) (+I,-I)
(c) (0, it, 0), (i7, 0, 7r) (-1,+l)

(d) (it, it, 0), (0,0, 7r) (+1, +1)

Thus parasites can travel in any of the directions at 450 to the grid. If any parasite
of form (b) or (d) is permitted by the boundary conditions, the difference model is
unstable.

Abarbanel et al. consider various boundary formulas. Four of these are space
extrapolation and skewed space extrapolation,

S: (E. - 1)9vo,+ ' = 0,

SS: (EZE, - 0)v'+' - 0,

and space/time extrapolation and skewed space/time extrapolation,

ST: (EzE-' - 1)9u 4 1 == 0,
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SST: (E.E E' - i)qv + 1 = 0.

Here E., E., and Et denote the shift operators in z, y, and t. By counting sign
changes, one can see which boundary formulas permit which sawtooths. One finds

stable sawtooths unstable sawtooths

S (0, 0, 0), (0,W, 0) (0 0, 7r), (0,r, r)
SS (0, 0, 0), (W, 7, ,r) (0, 0, 1r), (7r, ., 0)

ST (0, 0, 0), (0, ir, 0), (7r, 0, 7r), (7r,.r, wr)

SST (0, 0, 0), (wr, 0, r) (0, 7r, 7r), (7r, 7r, 0)

Thus S, SS, and SST are all unstable with LF. It turns out that ST, which we see has
no sawtooth instabilities, is indeed stable.

Other difference formulas typically permit fewer sawtooths, hence are stable with

more boundary conditions. Let us generalize to d space dimensions. If X and j are
d-vectors, emi will denote x: '... ij'.

Deff. Let Q be a scalar difference formula in d space dimensions. Suppose that

whenever Q admits a solution v7 =- XSzn with jzj = Irl = 1 for each i, xt = 1 for
some 1, and group velocity 0 E Rd, then it also admits the solution v - (-=)tez ,
and this wave has group velocity C' E Rd satisfying C = Ci for i I and CC' <
0. Then Q is ri-reversing. Suppose that whenever Q admits a solution V -
with Ixcl = 1 for all i and group velocity C E Rd, then it also admits the solution
v = t'(-l)", with group velocity CE Rd satisfying CIC < 0 for 1 < i < d. Then
Q is t-reversing.

Now let Q be a difference model of

d

Ut = , U,

Y-I

on t, xi : 0, z, E (-oo,oo) for 2 < j d, and let the boundary conditions S, SS,
ST, SST be extended in the obvious way. By the same arguments as above we obtain

the rollowing theorem:

Theorem 7. The following assertions hold in the stated direction only; their
covverses are not in general valid.

(i) The model SQ is unstable if Q is t-reveraing.
(ii) The model SSQ is unstable if Q is t-reversing or if Q is zi-reversing and

also z,-reveruing for at least one j 2.
(iii) The model SSTQ is unstable if Q is zl-reversing and/or t-reversing, and

also , -reversing for at least one j ! 2. 1

Among the formulas Q considered by Abarbanel et al. are multidimensional versions
of LF, CN, BE, and MC (MacCormack's scheme). One sees readily that LF is t-

17



reversing and z,-reversing for each j, CN and BE are x.-reversing for each j but not
i-reversing, and MC is not reversing in any variable. It turns out that all combinations
of these schemes with S, SS, ST, or SSTr that are not ruled u nstable by Thin. 7 are
in fact stable.
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